日韩欧美一区二区三区免费观看-欧美乱人伦中文字幕在线-人人干人人噪人人摸-131mm少妇做爰视频-亚洲色 国产 欧美 日韩-日韩中文字幕无码一区二区三区

Location:Home / News

News

Industry News

New Technology Increases Rotary Swivel Pressure and Speed Capacity

Time:11 Jan,2016
Kalsi Engineering, a Sugar-Land, Texas-based rotary seal manufacturer, has introduced new swivel seal technology that dramatically increases the speed and pressure capability of rotary swivels. New technology by Kalsi Engineering increases rotary swivel pressure and speed capacity The journal bearing fit between the metal backup ring and the shaft establishes the minimum practicable extrusion gap clearance for the swivel seal. "Kalsi-brand swivel seals have a high modulus plastic inner layer for extrusion resistance, and an elastomer body that is radially compressed during installation." -- Lannie Dietle, Kalsi Engineering HOUSTON, TEXAS (PRWEB) JANUARY 07, 2016 Kalsi Engineering has introduced new swivel seal technology that significantly increases the pressure and speed capacity of rotary swivels, compared to other polymeric seals. This technology is applicable to both side entry and coaxial swivels, and can be configured to conduct fluids ranging from hydraulic fluid to abrasive process fluids. The pressure and speed advantages of the new technology are the result of two key technical advances: A laterally floating metal backup ring establishes the smallest practicable extrusion gap clearance for the swivel seal. The swivel seal bridges the extrusion gap with a layer of highly engineered, extrusion-resistant thermoplastic that is hydrodynamically lubricated by an advanced hydrodynamic inlet geometry. "Kalsi-brand swivel seals have a high modulus plastic inner layer for extrusion resistance, and an elastomer body that is radially compressed during installation," said Lannie Dietle, principal designer for Kalsi Engineering. "The liner is formed into an aggressive, patented hydrodynamic wave pattern. When the shaft rotates, the waves pump lubricant into the dynamic interface, causing the seal to hydroplane on a thin layer of lubricant." This interfacial lubrication reduces seal operating temperature, allowing higher speed operation in high pressure conditions, and prolonging seal life. When rotation ceases, the pumping action stops, and conventional static sealing occurs. Previous wave forms were incapable of providing interfacial lubrication with typical swivel lubricants, such as the low viscosity hydraulic fluids encountered in hydraulic swivels. The inherent pressure capacity of Kalsi-brand swivel seals is amplified when the seals are used with patent-pending, laterally floating backup rings. The seal and backup ring combination has been tested extensively at a PV of 1,900,000 PSI X SFPM, using a differential pressure of 7,600 psi and a surface speed of 250 SFPM. Tests as long as 1,000 hours have been performed in these conditions, with the seals remaining in excellent condition at the conclusion of testing. Traditional rotary swivel designs employ relatively large extrusion gap clearance, to prevent heavily-loaded shaft-to-housing contact at the extrusion gap, and associated component damage and excessive frictional heat. The clearance required to prevent these issues is detrimental to high pressure seal operation. Internal pressure expands the housing, further increasing the extrusion gap clearance. In contrast, the floating backup ring has a tight, journal bearing-type fit with the surface of the shaft, establishing the minimum practicable extrusion gap for the swivel seal. Ordinarily, such a fit would be detrimental to the seal, because metal-to-metal contact would generate destructive levels of heat. This is avoided by making the backup ring axially force balanced. The same pressure is applied to equal areas on the oppositely facing ends of the backup ring, resulting in zero net axial hydraulic force. This leaves the backup ring free to slide laterally to accommodate misalignment, lateral deflection, and runout of the shaft. A radial vent passage ensures that the backup ring is radially pressure balanced, eliminating pressure-related extrusion gap dimensional changes. The bulkhead and retainer housings are simple annular components that stack together. The housings are aligned by a pilot region that is bind-proof due to its short length. This easy-to-assemble stacked housing arrangement is held together by a pattern of axial bolts. This simple stacked housing arrangement is appropriate for extreme pressure service in both side-entry and coaxial rotary swivels. The arrangement has been evaluated with a 4.5” shaft diameter. About Kalsi Engineering Founded in 1978, one division of Kalsi Engineering provides advanced rotary sealing technology, and the other provides mechanical engineering consulting services. The firm is located in Sugar Land, Texas, minutes from the Houston metropolitan area. More information about Kalsi-brand rotary seals and related technology is available at http://www.kalsiseals.com.
2017 © SUFUL bearing.ALL Right Reserved
logo
主站蜘蛛池模板: 天天爽夜夜| 久久99青青精品免费观看| 小草激情视频| 婷婷五月综合缴情在线视频| 色综合天天色| 99青青青精品视频在线| 噜噜噜动态图超猛烈| av永久免费| 精品人人妻人人澡人人爽牛牛 | 91精品国产综合久久福利| 国产一区| 日韩1页| 羞羞视频在线免费| 色婷婷视频在线| v片在线看| 色狠狠xx| 天天爱夜夜| 丝袜 亚洲 另类 欧美 综合| 99久久精品国产亚洲| 欧美久草| 久久亚洲中文字幕无码| 极品熟妇大蝴蝶20p| 国产精品久久久亚洲| 40岁成熟女人牲交片| 99热欧美| 亚洲综合色网站| 欧美伦理一区| 亚洲精品手机在线| 久久国产一区二区| 亚洲精品视| 久久国产免费看| 夜夜夜夜爽| 欧美精品在线一区| 奇米视频777| 国产成人a亚洲精v品无码| 亚洲不卡| 国产无线乱码一区二三区| 成人18网站| 亚洲人成网亚洲欧洲无码久久 | 欧美日韩国产综合一区二区三区| 欧美日日日|